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ABSTRACT

BACKGROUND Left ventricular (LV) pressure measurement is the clinical gold standard for assessing cardiac function; 
however, its reliance on invasive catheterization limits accessibility and widespread use.

OBJECTIVES This study aimed to develop a cuff-based machine learning (cuff-ML) approach for reconstructing LV 
pressure from noninvasive brachial waveforms as a bedside assessment of cardiac function.

METHODS Subjects referred for nonemergent left heart catheterization were recruited for LV pressure and brachial 
cuff waveform measurement. The cuff-ML method was trained using brachial waveforms to predict LV pressure and was 
evaluated for morphology and parameters accuracy against invasive catheter measurements. Cardiac function was 
assessed based on the reduced LV peak pressure derivative ([+]dP/dt <1,200 mm Hg/s).

RESULTS A total of 104 subjects, comprising 3,572 simultaneous LV and cuff-based brachial waveform pairs, were 
analyzed using a 70:30 train-test split (test cohort: 32 subjects, 1,023 cardiac cycles). The cuff-ML approach demon-
strated high accuracy in reconstructing LV waveform shape compared to catheter measurements (median normalized 
root mean squared error = 8.2%). Pressure-based parameters, including maximum pressure (r = 0.92, P < 0.001), mean 
blood pressure (r = 0.94, P < 0.001), and developed pressure (r = 0.85, P < 0.001), showed strong correlations with 
invasive measurements. Cuff-ML-reconstructed waveforms identified abnormal systolic contractility (72% sensitivity, 
73% specificity) on a beat-to-beat basis.

CONCLUSIONS Cuff-ML accurately reconstructs LV pressure from brachial cuff measurements. This noninvasive 
approach may be helpful for assessment of cardiac function and requires further study. (JACC Adv. 2025;4:102104) 
© 2025 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open 
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

A ssessing left ventricular (LV) pressure pro-vides crucial insight into systolic and dia-
stolic cardiac functions. Age-related and 

disease-induced myocardial impairment can lead to 
diminished LV contractile forces which culminate in

cardiovascular disease and heart failure. 1,2 Clinicians 
rely on various parameters extracted from the LV 
waveform to diagnose and monitor such conditions. 
Systolic function evaluation assesses parameters 
such as the maximum pressure derivative ([+]dP/dt),
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which reflects ventricular contractility. 3 In 
addition, measuring LV end-systolic pres-
sure provides insights into ventricular after-
load, often combined with volumetric 
measurements to yield a load-independent 
measure of systolic performance. 4,5 For dia-
stolic function, parameters like the 
maximum negative pressure derivative ([− ] 
dP/dt) or the relaxation time constant (σ) 
are indicative of ventricular relaxation and 
can be affected in various cardiac pathol-
ogies. 6,7 Furthermore, LV end-diastolic 
pressure can be used to assess LV conges-
tion. 8 A comprehensive analysis of the LV 
pressure waveform holds significant clinical 
utility.

Direct measurement of LV pressure re-
quires left heart catheterization, an invasive 
procedure associated with some risk. Within 
cardiovascular pressure assessments, 
noninvasive peripheral measurements are 
routinely employed as surrogates for central 
pressures owing to their practical advantages 

in clinical settings. 9-13 Although primarily used for 
aortic parameters, peripheral waveforms can also 
potentially estimate a small subset of LV parame-
ters. 14-16 However, the limited scope of these 
parameters significantly restricts their clinical appli-
cability. There exists an unmet clinical need to 
develop a method that reconstructs the LV pressure 
waveform from noninvasive measurements at the 
peripheral arteries. Cuff-based systems represent an 
ideal platform for this application, harnessing their 
capabilities for repeatable and automated measure-
ments, integrated pressure and waveform acquisi-
tion, and their extensive prevalence in clinical 
practice. 17,18

To our knowledge, no well-established method 
currently exists for reconstructing the LV pressure 
waveform from noninvasive peripheral measure-
ments. One of the primary challenges in this recon-
struction is LV-aorta decoupling—the phase of the 
cardiac cycle during which the aortic valve is closed, 
preventing communication between the LV and the 
arterial system. 19-21 To address this gap, we devel-
oped a time-frequency machine learning (ML) 
approach designed to augment capturing the 
nonlinear dynamics of the decoupling phase. We 
evaluated our method using simultaneous data from 

invasive LV catheterization and noninvasive brachial 
cuff waveform measurements. The primary objective 
of this study is to develop a robust method for 
reconstructing the shape and magnitude of the LV 
pressure waveform using noninvasive peripheral

measurements acquired with a simple brachial cuff. 
Our secondary aim is to assess accuracy and clinical 
relevance of parameters derived from the recon-
structed LV waveform by comparing them against 
simultaneously acquired invasive reference 
measurements.

METHODS

STUDY DESIGN. This study involved concurrent 
pressure waveform measurements via invasive LV 
catheterization and noninvasive brachial cuff. 
Individuals aged 21 or older with a referral for non-
emergent left heart catheterization were recruited 
between September 2021 and September 2022. The 
health centers that participated in the study included 
Princeton Baptist (Alabama), LSU Health Sciences 
Center (Louisiana), Long Beach Memorial Care Hos-
pital System (California), Orange Coast Memorial 
Care Hospital (California), and Saddleback Memorial 
Care Hospital System (California). The study 
excluded participants who experienced a major 
adverse cardiac event within 1 week before cathe-
terization, those in whom a brachial blood pressure 
(BP) measurement could not be obtained, and those 
in whom the interventional cardiologist contra-
indicated cardiac catheterization. Clinical data were 
collected via a chart review. The study received 
approval from 2 Institutional Review Boards (IRBs): 
the Western IRB and the Salus IRB. Before the pro-
cedure, participants provided written informed con-
sent. The study adhered to the principles outlined in 
the Declaration of Helsinki.

STUDY DEVICES. Noninvasive pulse waveform 

recording was performed using an investigational 
brachial cuff device specialized for pulse waveform 

acquisition developed and validated by Tamborini and 
Gharib. 17,22 The cuff device consists of a noninvasive 
BP module for measurement functionalities and a 
custom pneumatic system for waveform capture. De-
vice functionality—oscillometric BP measurement and 
tourniquet mode—were preprogrammed in the 
noninvasive BP module, all of which—methods and 
algorithms—were validated for accuracy and safety 
from the manufacturer. The cuff was designed to 
output results in analog format to a data acquisition 
system in real-time. The cuff protocol performs a BP 
measurement followed by pulse waveform capture 
using the tourniquet mode. The hold at suprasystolic 
BP (sSBP) was performed for 40 seconds, which is 
defined as systolic BP (SBP) plus 35 mm Hg. Calibration 
of the noninvasive waveforms followed previously 
described methods. 22 Briefly, each cuff-acquired 
waveform was first normalized and then linearly
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rescaled such that its maxima and minima correspond 
to the subject’s SBP and diastolic BP, respectively, as 
obtained from the preceding oscillometric measure-
ment using the same cuff device. The study required 
brachial cuff placement on the subject’s left arm 

following standard cuff-placement guidelines. 
Invasive pressure recording used the Millar Mikro-

Cath pressure catheter. LV catheterization was per-
formed via either femoral or radial access. Due to 
brachial cuff placement requirements, catheter 
access at the radial artery was restricted to the right 
site. A sampling frequency of 1 kHz was selected as it 
represents the highest rate supported by all study 
devices that falls within manufacturer operating 
recommendations to accurately capture rapid hemo-
dynamic changes.

DATA HANDLING. Data were manually inspected and 
algorithmically filtered to exclude measurements 
affected by apparatus malfunction, procedural 
errors, saturated signals, arrhythmias, poor signal 
quality, or failure to identify waveform cardinal 
points. Subjects with missing data were dropped 
from the study. The data set comprised multiple 
pulse waveforms per subject, each treated as an in-
dividual but nonindependent data point. To prevent 
data leakage, we performed a random subject-level 
train-test split, assigning 70% of subjects to training 
and 30% to testing (Figure 1C). Model fitting and 
hyperparameter tuning were restricted to the 
training set, whereas the final evaluation was con-
ducted on the held-out test set. To assess generaliz-
ability, we also conducted a 10-fold shuffle-split 
cross-validation using a fixed random seed, ensuring 
consistent 70:30 subject-level splits across folds 
(Supplemental Figure 1). Fourier decomposition 
reconstruction accuracy of the LV pressure was 
evaluated by transforming each waveform into the 
frequency domain and reconstructing it using a 
limited number of harmonics.

ALGORITHM DEVELOPMENT. Cuff-based ML (cuff-
ML) was developed to map a calibrated brachial 
waveform during the sSBP hold to the corresponding 
LV pressure waveform. The input space included 
both time- (n = 3) and frequency-domain (n = 35) 
features. Time-domain features were derived using 
pulse wave analysis (PWA) to extract physiologically 
relevant characteristics. Frequency-domain features 
were obtained via Fourier transform, using the first 
18 modes—defined by the sine and cosine coefficients 
of each harmonic component—of the brachial

waveform. The model predicts the first 16 modes of 
the LV pressure waveform, which were converted 
back to the time domain using the inverse Fourier 
transform. Model training minimized the root mean 
squared error (RMSE) between predicted and refer-
ence LV waveforms in the time domain. The model 
architecture was a fully connected, feedforward 
neural network (NN) consisting of 3 dense layers (512, 
256, and 64 nodes), trained for 60 epochs with a 
learning rate of 0.005. The model’s 38 input features 
had no missing data. A detailed description is avail-
able in the Supplemental Notes.

The cuff-ML method was compared to a model 
developed using conventional Fourier-based ML 
transfer function principles, as previously out-
lined. 13,23 This ML approach relies exclusively on 
using frequency-domain information derived from 

Fourier decomposition to reconstruct the waveform 

at the target location. The model employs a support 
vector regression (SVR) architecture with 18 input 
modes, as originally proposed in the literature, 23 and 
16 output modes to subsequently reconstruct the LV 
pressure waveform. The SVR model was configured 
with a linear kernel, a regularization parameter 
C = 100, and an ε-insensitive loss set at 0.001, all 
computed in the frequency domain. During the 
comparison, this model architecture will be referred 
to as SVR.

Both models were trained and tested on the same 
instances of training and testing cohorts. Methods 
were compared to evaluate waveform reconstruction 
accuracy on the testing population using the RMSE, 
normalized-RMSE (nRMSE), and Pearson Correlation 
Coefficient (r) metric. Real time applicability was 
evaluated by running the trained cuff-ML algorithm 

on an emulated stream of real data from individuals 
in the testing population. The algorithm iteratively 
searched for valid sSBP cuff waveforms in the data 
stream as input to cuff-ML for LV waveform 

prediction.
PWA was conducted on individual cardiac cycles 

for both the true and reconstructed LV waveforms. 
Subsequently, the results were subject averaged to 
generate a single prediction per individual. Clinically 
significant waveform parameters were extracted, in-
clusive of maximum pressure (P max ), mean BP (MBP), 
end systolic pressure, developed pressure, mean 
systolic pressure, (+)dP/dt, (− )dP/dt, contractility 
index, σ, tension-time index, isovolumic time, peak 
time (T peak ), systolic time (T sys ), and diastolic time 
(T dia ). 15,24-28 Supplemental Table 1 contains
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FIGURE 1 Cuff-ML Study Design

(A) Physiological wave propagation from LV to periphery and the reserve engineering approach of cuff-ML to reconstruct LV pressure. (B) Coupling and decoupling 
phases of the LV and arterial system via aortic valve opening and closing. (C) Study design and algorithm workflow for the cuff-ML models. Part of the figure was 
generated with adapted illustrations from Servier Medical Art, provided by Servier and licensed under a Creative Commons Attribution 3.0 Unported License. 
cuff-ML = cuff-based machine learning; LV-Ao = left ventricular-aorta.
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parameter descriptions. Abnormal LV systolic 
contractility was assessed as (+)dP/dt at the 
threshold of 1,200 mm Hg/s. 29

STATISTICAL ANALYSIS. Waveform reconstruction 
accuracy and shape correspondence were assessed 
using RMSE, nRMSE, and r between the true and 
reconstructed waveforms. The nRMSE expresses the 
error as a percentage, normalized by the pulse 
amplitude of the true signal. Cuff-ML was evaluated 
for reconstruction accuracy for individual cardiac 
cycles and the continuous signal. Individual cardiac 
cycle accuracy was assessed with RMSE and nRMSE 
on the pressure and first derivative. Evaluation of 
continuous pressure-time signal reconstruction 
assessed tracking accuracy in pressure fluctuations, 
reconstruction precision, and repeatability. Pressure 
tracking accuracy compared the average fluctuation 
of MBP during breathing cycles between the catheter 
and reconstructed signal. Cuff-ML waveform recon-
struction consistency was assessed at the subject 
level by comparing the RMSE average and SD. Preci-
sion and repeatability were measured using the co-
efficient of variation, calculated as the ratio of the SD 
to the mean.

Parameters extracted using PWA on the recon-
structed LV waveforms were assessed against true 
values obtained from catheter measurements using 
true-versus-predicted scatter plots and Bland-
Altman analysis. Correlation strength was measured 
with r and with the intraclass correlation coefficient 
(ICC) reported with 95% CIs. Bland-Altman analysis 
was employed to determine bias and limits of 
agreement. Correlation between parameter residuals 
(true minus predicted) and covariates of age, body 
mass index (BMI), and body surface area was evalu-
ated. The reconstructed LV pressure tracings were 
used to estimate abnormal systolic contractility, as 
measured with (+)dP/dt <1,200 mm Hg/s. 29 Classifi-
cation analyses were performed on both the beat-to-
beat level and the subject level. For subject-level 
classification, the final label was determined by 
averaging the classification across all cardiac cycles 
for a given patient, mimicking a clinical setting where 
multiple waveforms inform a single patient-level 
decision. Accuracy, sensitivity, and specificity were 
used to quantitatively assess the classification. Sta-
tistical differences were assessed using the 
nonparametric Mann-Whitney U test for continuous 
variables and the chi-square test for categorical var-
iables. Statistical significance was set at P < 0.05. All 
analyses were conducted using custom scripts writ-
ten in Python (version 3.11).

RESULTS

CLINICAL CHARACTERISTICS. Figure 1 summarizes
the logic of the algorithmic approach, the problem 

statement, and the study design. The study initially 
recruited 202 individuals. After applying all exclu-
sion criteria (ie, apparatus malfunction, procedural 
errors, saturated signals, arrhythmias, poor signal 
quality, or failure to identify waveform cardinal 
points), 104 subjects remained for analysis 
(Figure 1C), and none had missing data. The main 
exclusion included 18 cuff malfunctions, 17 severe 
arrhythmias, and 15 incorrect procedures (Figure 1C, 
Supplemental Table 2). The analysis cohort (n = 104) 
included 65% males, with an average age of 66 years 
and a mean BMI of 28.4 (Table 1). The study popula-
tion reported high prevalence of hypertension (76%), 
hyperlipidemia (75%), and diabetes (33%). As part of 
the model development process, patients were 
divided into a training cohort (n = 72) and a testing 
cohort (n = 32). There were no statistically significant 
differences in patient characteristic between the 2 
cohorts, as assessed using the Mann-Whitney U test 
and chi-square test (Supplemental Table 3). 
Supplemental Table 4 reports reasons for referral to 
catheterization. Processing the total study cohort 
(n = 104) generated 3,572 cardiac cycle pairs (cuff 
sSBP and LV catheterization). Supplemental Figures 2 
and 3 evaluate the effect of limited modes on the self-
reconstructed LV waveform, showing reconstruction 
accuracy using nRMSE (n = 3,572) and providing a 
visual representation, respectively. Supplemental 
Figure 4 reveals a 2-tailed distribution for the 
breathing-induced cardiac cycle start-to-end pres-
sure difference with a mean of 0.0 (4.3) mm Hg. 
Supplemental Figure 5 highlights the morphological 
and magnitude variability of the LV pressure wave-
form within the study cohort.

CUFF-ML WAVEFORM RECONSTRUCTION. The cuff-
ML model was independently fitted to the training 
population (subjects = 72; cardiac cycles = 2,549), 
and subsequently used to predict the LV waveform 

on the testing population (subjects = 32; cardiac 
cycles = 1,023). Reconstruction error was assessed in 
the test population (n = 1,023) using RMSE and 
nRMSE on the pressure signal in Figure 2A; the model 
yielded a median [IQR] RMSE of 9.9 [7.1, 14.1] mm Hg 
and nRMSE of 8.2 [5.8, 11.5] %. An example of a 
reconstructed and measured LV waveform is shown 
in Figure 2B with the respective error metrics. 
Figure 2C plots the one-to-one proportionality be-
tween measured and reconstructed waveforms on a
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point-by-point basis for the test population. The cuff-
ML model learning curve is reported 
Supplemental Figure 6.

The cuff-ML NN model is compared to a conven-
tional Fourier-based ML model using the SVR archi-
tecture. Supplemental Figure 7 compares the 
reconstruction error of the 2 models on the pressure 
waveform and first derivative. For the pressure time 
signal, statistical analysis revealed significant dif-
ference between the SVR and NN models (RMSE: 
P < 0.0001; nRMSE: P < 0.0001; r: P < 0.0001). 
Similar trends were observed across the first deriva-
tive for RMSE, nRMSE, and r (Supplemental Figure 7). 
Supplemental Figure 8 showed the point-by-point 
proportionality plot for the 2 models.

Figure 3A displays the reconstructed waveform 

shape from cuff-ML in 4 individuals. The continuous 
LV pressure from cuff-ML closely follows the shape 
and pressure variations of the catheter measurement 
(Figure 3B). The cuff-ML reconstructed waveforms 
captured average MBP fluctuations from breathing

(r = 0.77; P < 0.0001) as measured with the catheter 
(Figure 3C). The subject-level waveform reconstruc-
tion precision and repeatability generated a coeffi-
cient of variation of 0.28 (mean avg = 10.8 mm Hg; 
SD avg = 3.2 mm Hg). Supplemental Figure 9 shows 
continuous signal reconstructions for subject 2, sub-
ject 3, and subject 4 from Figure 3A. Supplemental 
Figure 10 displays 4 reconstructed and catheter 
waveforms with incremental RMSE. Supplemental 
Figure 11 displays the error distribution for MBP 
fluctuation amplitude and 3 cases of continuous 
signal reconstruction at incremental errors. Videos 1 
to 4 show the real time implementation of cuff-ML 
for beat-to-beat prediction of LV pressure in 4 sam-
ple cases.

LV WAVEFORM ANALYSIS. PWA extracted clinically 
significant parameters from both the measured and 
reconstructed signals (n = 1,023). Figures 4A and 4B 
show the true-versus-predicted plots as well as the 
Bland-Altman analysis for 4 pressure-based parame-
ters and 4 shape-based indices, respectively. All 
pressure-based parameters reported strong correla-
tions between true and predicted values: P max 

(r = 0.92; P < 0.0001; ICC: 0.96), MBP (r = 0.94; 
P < 0.0001; ICC: 0.96), end systolic pressure 
(r = 0.89; P < 0.0001; ICC: 0.94), and developed 
pressure (r = 0.85; P < 0.0001; ICC: 0.91). Shape-
based indices also demonstrated strong correla-
tions: T peak (r = 0.85; P < 0.0001; ICC: 0.91), T sys 
(r = 0.80; P < 0.0001; ICC: 0.89), tension-time index 
(r = 0.95; P < 0.0001; ICC: 0.97), and contractility 
index (r = 0.71; P < 0.0001; ICC: 0.79). Supplemental 
Figure 12 shows the analysis for 6 additional param-
eters measured on the LV pressure waveform using 
PWA. Supplemental Table 5 compares parameter re-
siduals and covariates (age, BMI, and body sur-
face area).

Reconstructed LV pressure waveforms were used 
to classify ventricular performance metrics on both a 
beat-to-beat and subject-averaged basis, using cath-
eter measurements as reference (n = 1,023). 
Abnormal LV systolic contractility classification re-
ported 563 true negative, 177 true positive, 218 false 
positive, and 65 false negative occurrences 
(Figure 5A), with an accuracy of 72% (sensitivity: 73%; 
specificity: 72%). The subject-averaged classification 
analysis yielded an accuracy of 75% (sensitivity: 89%; 
specificity: 70%) for abnormal LV systolic contrac-
tility (Figure 5B).

Model generalizability was tested with a 10-fold 
shuffle split validation on the entire study popula-
tion (subjects = 104; cardiac cycles = 3,572); 
Supplemental Table 6 reports shuffle split data

TABLE 1 Study Population

All
(N = 104)

Train
(n = 72)

Test
(n = 32)

Clinical characteristics 
Age (years) 66 ± 9 66 ± 9 64 ± 10
Male, n (%) 68 (65%) 44 (61%) 24 (75%) 
Height, (m) 1.71 ± 0.10 1.71 ± 0.10 1.72 ± 0.09 
Weight, (kg) 83.3 ± 17.5 82.7 ± 17.7 84.6 ± 17.3 
Body mass index, (kg/m 2 ) 28.4 ± 5.1 28.2 ± 5.0 28.7 ± 5.2
White, n (%) 68 (65%) 46 (63%) 22 (68%)

Comorbidities 
Hypertension, n (%) 80 (76%) 53 (73%) 27 (84%)
Diabetes, n (%) 35 (33%) 24 (33%) 11 (34%)
Thyroid, n (%) 13 (12%) 12 (16%) 1 (3%)
Hyperlipidemia, n (%) 78 (75%) 54 (75%) 24 (75%)
Smoker, n (%) 14 (13%) 7 (9%) 7 (21%)

Cardiovascular disease 
Cardiomyopathy, n (%) 9 (8%) 5 (6%) 4 (12%)
Carotid artery disease, n (%) 26 (25%) 19 (26%) 7 (21%)
Heart valve disease, n (%) 18 (17%) 15 (20%) 3 (9%)
Aortic stenosis, n (%) 5 (4%) 4 (5%) 1 (3%)
Aortic regurgitation, n (%) 4 (3%) 4 (5%) 0 (0%)
Mitral stenosis, n (%) 0 (0%) 0 (0%) 0 (0%)
Mitral regurgitation, n (%) 13 (12%) 11 (15%) 2 (6%)

History of cardiac surgery, n (%) 12 (11%) 6 (8%) 6 (18%)
Myocardial infarction, n (%) 19 (18%) 15 (20%) 4 (12%)
Peripheral vascular disease, n (%) 20 (19%) 15 (20%) 5 (16%)
Pacemaker, n (%) 5 (4%) 4 (5%) 1 (3%)
Stroke, n (%) 2 (1%) 1 (1%) 1 (3%)

Values are mean ± SD unless otherwise indicated. Characteristics of the full study population with partition for 
the training (70%) and testing (30%) cohorts.
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partitioning and Supplemental Table 7 reports 
waveform reconstruction error metrics of RMSE and 
nRMSE.

DISCUSSION

This study established that cuff-ML accurately and 
repeatably reconstructs LV pressure from noninva-
sive brachial waveform measurements. The cuff-ML 
method uses a nonlinear mapping technique to 
generate LV waveforms, with clearly defined systolic 
and diastolic segments. The results demonstrated 
that our reconstruction technique reliable captured 
patient-specific LV waveform magnitude and shape, 
our primary goal of this study. PWA on the cuff-ML 
reconstructed LV waveforms demonstrated strong 
correlations for pressure-based parameters and 
waveform indices when compared to catheter mea-
surements. Analysis of the reconstructed waveforms 
classified cardiac cycles with abnormal systolic 
contractility using (+)dP/dt with a sensitivity of 72% 

and specificity of 73%. The Central Illustration sum-
marizes the study objectives and results.

Previous studies aimed to reconstruct the LV 
waveform shape and magnitude but did not provide 
validated and applicable approaches in human sub-
jects. 30,31 Xiao-Ping et al 30 developed a regression 
model in a population of ten dogs using only invasive 
measurements. Liu et al 31 developed a model on 
simulated, rather than measured, LV waveforms.

To the best of the authors’ knowledge, this study 
represents the first endeavor to reconstruct the LV 
waveform from noninvasive measurements in 
humans. We demonstrated that the LV waveform’s 
morphology can be accurately captured using the 
Fourier transform. Using 16 modes, self-
reconstruction achieved an nRMSE <1%, guiding 
our model’s output dimensionality. We also 
confirmed that respiratory pressure fluctuations 
minimally affect cycle-to-cycle pressure deltas, vali-
dating the periodicity assumption and showing that 
Fourier decomposition introduces negligible bias. 
This work enhances the clinical use of peripheral 
measurements by introducing an ML technique to 
reconstruct the LV waveform—an approach that 
aligns with current trends in cardiovascular 
research. 32

Noninvasive reconstruction of LV pressure is 
challenging due to the decoupling of the LV-aorta 
system following aortic valve closure during dias-
tole. To address this limitation, we introduce 3 key 
technical enhancements to our previously proposed 
Fourier-based method which are aimed at augment-
ing model prediction in the diastolic segment. 13,23 

Firstly, the cuff-ML model proposed in this paper 
uses a feed-forward NN architecture with fully con-
nected layers, enabling it to capture complex 
nonlinear interactions among input parameters. In 
addition, the model incorporates time-domain fea-
tures extracted from the pressure waveform using

FIGURE 2 Cuff-ML Reconstruction of LV Pressure

(A) Reconstruction error measured with the RMSE and the normalized nRMSE for the pressure signals. (B) A reconstructed waveform from the cuff-ML model against 
the measured waveform with annotated error metrics. (C) Shows the point-by-point proportionality plot between all measured and reconstructed waveforms. Black 
line represents the one-to-one proportionality. nRMSE = normalized–root mean squared error; RMSE = root mean squared error; other abbreviations as in Figure 1.
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PWA, specifically designed to capture waveform dy-
namics and enrich the input data space. Lastly, 
computing the loss function in the time domain 
directly on the reconstructed pressure-time signal 
ensures accurate representation of both systolic

and diastolic components. To evaluate these im-
provements, we compared model performance of the 
proposed cuff-ML model with the SVR approach as 
described by Aghilinejad et al 23 and Tamborini et al. 33 

This analysis demonstrated statistically significant

FIGURE 3 Continuous LV Waveform Reconstruction With Cuff-ML

(A) LV pressure waveform and first derivative for catheter (true) and cuff-ML reconstruction (predicted) in 4 subjects. (B) A sample of the reconstructed continuous LV 
pressure signal using the cuff-ML method vs the catheter. (C) True-versus-predicted plot for the subject averaged LV mean pressure fluctuation amplitude across 
breathing cycles between the catheter measurement (true) and the cuff-ML reconstruction (predicted). (D) Quantifies the subject-level error and variability using the 
COV on the RMSE for the pressure signal reconstruction. COV = coefficient of variation; MBP = mean blood pressure; other abbreviations as in Figures 1 and 2.
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performance improvements across all reconstruction 
metrics on the pressure signal and its first derivative 
(Supplemental Figures 7 and 8). The technical ad-
vancements enhance explanatory power of the cuff-

ML model effectively bridging the information gap 
between peripheral measurements and LV pressure. 

LV waveforms reconstructed with cuff-ML display 
the expected pressure rise during contraction, fall

FIGURE 4 Comparison of True vs cuff-ML Measured LV Features

Prediction accuracy is evaluated using the true-versus-predicted and the Bland-Altman analysis of bias and 95% limits of agreement. (A) shows the pressure-based 
parameters, each column represents a different variable: maximum systolic pressure (P max ) in mm Hg; mean pressure (MBP) in mm Hg; end systolic pressure (ESP) in 
mm Hg; developed pressure (DP) in mm Hg. (B) shows the shape-based features, each column represents a different variable: peak timing (T peak ) in s; systolic time 
(T sys ) in s; time tension index (TTI) in mm Hg*s; contractility index (CTI) in 1/s. r = Pearson correlation coefficient; ICC = intraclass correlation coefficient; other 
abbreviations in Figure 1.
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during relaxation, and slow steady rise during filling 
(Figure 3). Similarly, the first derivative exhibits the 
isovolumetric contraction peak and isovolumetric 
relaxation dip as measured with a catheter. 
Supplemental Figure 10 further reveals that the 
waveform shape is well preserved across the full 
spectrum of prediction accuracies. The faithfulness 
of the reconstructed waveforms is also reflected in 
the continuous signal: the generated LV waveforms 
followed pressure and shape dynamics as measured 
invasively, indicating a high sensitivity to beat-to-
beat pressure changes (Figure 3, Supplemental 
Figure 10). Most importantly, the deployment 
of cuff-ML on a data stream (Videos 1 to 4) demon-
strated that the method could generate LV waveform 

predictions in real-time, allowing for clinical imple-
mentation at the patient’s bedside. The cuff-ML 
reconstruction of LV pressure could have applica-
tions beyond pressure analysis, such as in the 
development of noninvasive pressure-volume loops. 
Previous methods found promising results using 
empirical, normalized, and noninvasively scaled 
reference curves for LV pressure; therefore, we 
anticipate that implementing a patient-specific LV 
pressure waveform from cuff-ML could significantly 
enhance such analyses. 34

PWA was applied to the reconstructed LV wave-
forms to assess clinical applicability. The cuff-ML 
produced feature estimates that closely matched 
those measured with the catheter for most of the

pressure, slope, area, and timing parameters. 
The strong predictions and low bias indicate that 
cuff-ML derived parameters are suitable for clinical 
analysis (Figure 4, Supplemental Table 5). It is note-
worthy to discuss the marginally lower prediction 
accuracy observed for a subset of parameters, 
including σ and isovolumic time (Supplemental 
Figure 12). These parameters are measured on a 
portion of the pressure waveform during which the 
aortic valve is closed, aligning with the reduced in-
formation transmission from LV-aorta decoupling. 
Although this argument holds for some diastolic pa-
rameters, not all parameters in the diastolic segment 
were affected to the same extent. This variability 
may arise from the fact that only some of the LV 
properties are reflected in the peripheral waveform 

shape. Overall, the PWA results instill confidence in 
the predictive capabilities of cuff-ML, indicating 
their suitability for clinical decision-making.

The importance of measuring and monitoring 
different LV parameters as indicators of cardiac 
function is widely recognized. 3,16,35,36 For example, 
LV (+)dP/dt serves as a surrogate index of inotropic 
state and contractility. 8 Suzuki et al 25 reported lower 
(+)dP/dt is an independent predictor of cardiac mor-
tality in patients with cardiac resynchronization 
therapy. It is further reported that in systolic heart 
failure, (+)dP/dt is reduced. 37 In this study, we eval-
uated the classification accuracy for the (+)dP/dt 
clinical threshold using the LV reconstructed

FIGURE 5 Noninvasive Classification From the Reconstructed LV Pressure Waveform

Shows the confusion matrix for LV contractility, defined at (+)dP/dt <1,200 mm Hg/s for the beat-to-beat (A) and subject averaged (B) analysis. Confusion matrix is 
normalized along the Actual rows.
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waveform from cuff-ML. The cuff-ML reconstructed 
LV waveforms successfully classified cardiac cycles 
with abnormal systolic contractility with 72% accu-
racy. Using LV reconstructed waveforms from cuff-ML 
shows potential as a noninvasive tool for detecting 
abnormal cardiac function as measured with (+)dP/dt.

STUDY LIMITATIONS. Our study had some limita-
tions. The cuff-ML model was developed and vali-
dated on a population referred for left heart 
catheterization, which is characterized by a high 
prevalence of cardiac conditions and comorbidities. 
For widespread clinical use, further validation is 
needed across diverse populations and conditions, 
including interventions that independently alter 
pressure (eg, inodilators, heart rate modulation, and 
volume loading) and patient populations with 
myocardial or vascular disease, abnormal ventricular-
arterial coupling, or aging-related changes. Although

this may limit the model’s generalizability, the com-
plex data set and analysis provides a strong founda-
tion for such methods. Another limitation relates to 
data availability during algorithm development. Due 
to the high dimensionality of the data, we observed 
incremental performance improvements with 
increasing training size, suggesting that a larger data 
set could further enhance the model. Future studies 
with larger data sets can help refine the cuff-ML model 
and reveal its full potential.

CONCLUSIONS

We developed and validated a cuff-based method for 
reconstructing the LV pressure waveform from a 
noninvasive brachial measurement: cuff-ML. Our 
findings demonstrated accurate prediction of 
abnormal ventricular performance parameters as 
directly measured on the reconstructed waveform.

CENTRAL ILLUSTRATION Machine Learning Reconstruction of LV Pressure
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pressure information discontinuity between the 
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The trained cuff-ML method relies solely on a single 
point measurement at the brachial artery with a cuff-
based system, which is widely accepted, automated, 
and noninvasive. This completely noninvasive tech-
nique holds the promise of providing inexpensive, 
real-time information on ventricular performance 
and requires further study.
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PERSPECTIVES

COMPETENCY IN SYSTEM-BASED PRACTICE: 
Cuff-ML enables noninvasive, beat-to-beat recon-
struction of LV pressure waveforms from brachial cuff 
waveform measurements, offering clinicians an 
accessible and automated tool for a preliminary 
assessment of cardiac function without the need for 
invasive catheterization.

TRANSLATIONAL OUTLOOK: Future studies will 
need to assess the generalizability and clinical appli-
cability of this ML method for detecting cardiac 
function parameters across broader patient popula-
tions. Demonstrating its effectiveness in diverse care 
settings will be critical for widespread clinical adop-
tion and integration into routine cardiovascular 
assessment.
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