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Aims The ageing process notably induces structural changes in the arterial system, primarily manifesting as increased aortic stiff-
ness, a precursor to cardiovascular events. While wave separation analysis is a robust tool for decomposing the components 
of blood pressure waveform, its relationship with cardiovascular events, such as aortic stiffening, is incompletely understood. 
Furthermore, its applicability has been limited due to the need for concurrent measurements of pressure and flow. Our aim 
in this study addresses this gap by introducing a spectral regression learning method for pressure-only wave separation 
analysis.

Methods 
and results

Leveraging data from the Framingham Heart Study (2640 individuals, 55% women), we evaluate the accuracy of pressure- 
only estimates, their interchangeability with a reference method based on ultrasound-derived flow waves, and their 
association with carotid-femoral pulse wave velocity (PWV). Method-derived estimates are strongly correlated with the 
reference ones for forward wave amplitude (R2 = 0.91), backward wave amplitude (R2 = 0.88), and reflection index 
(R2 = 0.87) and moderately correlated with a time delay between forward and backward waves (R2 = 0.38). The proposed 
pressure-only method shows interchangeability with the reference method through covariate analysis. Adjusting for age, 
sex, body size, mean blood pressure, and heart rate, the results suggest that both pressure-only and pressure-flow evalua-
tions of wave separation parameters yield similar model performances for predicting carotid-femoral PWV, with forward 
wave amplitude being the only significant factor (P < 0.001; 95% confidence interval, 0.056–0.097).

Conclusion We propose an interchangeable pressure-only wave separation analysis method and demonstrate its clinical applicability in 
capturing aortic stiffening. The proposed method provides a valuable non-invasive tool for assessing cardiovascular health.
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Introduction
Aortic stiffness increases with age and is one of the earliest pathological 
changes within the arterial wall, affecting the wave dynamics in the 
vasculature.1–8 Nevertheless, there remains considerable ambiguity re-
garding the contributions of various components of blood pressure 
waveform and wave reflection to aortic stiffness. In classical pressure 
wave analysis, wave reflection is frequently assessed through the 
augmentation index (AIx).9 The clinical significance of AIx has been 
highlighted in recent work by Yofoglu et al.,10 demonstrating its corre-
lations with left ventricle mass. However, a limitation of AIx lies in its 
dependency not solely on the magnitude but also on the timing of 
wave reflection.9,11 This timing is influenced by a range of physical 
and physiological factors, including subjects’ height and heart rate.11,12

To provide a more comprehensive evaluation of wave reflection, 
wave separation analysis has been employed.13 This method decom-
poses the pressure pulse into a forward pressure wave, travelling 
from the heart to the periphery, and a reflected pressure wave, travel-
ling backward towards the heart.14,15 Zamani et al.16,17 highlighted the 
clinical significance of wave separation analysis by showing its ability to 
correlate with all-cause mortality in individuals initially free of clinically 
evident cardiovascular disease. In the Framingham Heart Study (FHS), 
Cooper et al.18 associated forward pressure wave amplitude with inci-
dent cardiovascular disease, whereas mean arterial pressure and global 
wave reflection did not show similar associations.

Despite the compelling evidence supporting the importance of wave 
separation analysis, its full integration into clinical practice is hindered by 
the requirement for simultaneous measurements of pressure and flow 
waveforms. Although approximate approaches based on triangular 

flow profiles or Windkessel-based methods enable wave separation 
analysis using only pressure measurements, implementing these proto-
cols in clinical settings is challenging, and their applicability has faced dif-
ficulties in large heterogeneous populations.12,19–22 Notably, the study 
by Kips et al.23 in the Asklepios population suggested substantial differ-
ences in results between pressure-based approximative methods and 
those using both pressure and flow information.

In this study, utilizing data from the population-based FHS, our objec-
tives are to: (i) evaluate the accuracy of pressure-only estimates for 
wave separation parameters through the application of the proposed 
spectral regression learning method, (ii) conduct a covariate analysis 
to investigate the interchangeability between the proposed pressure- 
only method and the reference method, and (iii) investigate the associ-
ation between wave separation parameters (using the reference as well 
as the proposed pressure-only method) and aortic stiffness, as mea-
sured by carotid-femoral pulse wave velocity (PWV). The selection 
of carotid-femoral PWV as a validation metric is based on its crucial 
role in governing wave dynamics within the cardiovascular system, 
along with its well-established pathophysiological association with the 
early arrival of pressure wave reflections.24–28

Methods
Participants and data
In this investigation, we employed data from the FHS, a population-based 
epidemiological cohort analysis. Details are provided in the previous 
works.15,18,28–30 The sample was drawn from the eight-examination cycle 
of an offspring cohort. The characteristics of the participants, including a 
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heterogeneous cohort of n = 2640 individuals (comprising 1201 males and 
1439 females, aged between 40 and 91 years), are presented in Table 1. All 
participants provided written informed consent, and the study protocols 
received approval from the Boston University Medical Campus and 
Boston Medical Center Institutional Review Board. Initially, the clinical 
data set is split into the training and testing data for all regression learning 
analyses. The models are strictly trained on the training population, and 
the testing data set is used only once to evaluate the accuracy of the model. 
The characteristics of these two data sets are also presented in Table 1. All 
participants underwent a thorough and non-invasive evaluation of central 
haemodynamics, resulting in a comprehensive collection of tonometry re-
cordings for carotid pressure waveforms. Aortic flow waveforms were ac-
quired through two-dimensional echocardiography of the left ventricular 
outflow tract, followed by pulsed Doppler from an apical five-chamber 
view to acquire the aortic flow waveform. Additionally, tonometry data 
were digitized at a rate of 1000 Hz during the primary acquisition process, 
and the waveforms were signal-averaged using the electrocardiogram 
R-wave as a fiducial point. Calibrated carotid pressure served as a surrogate 
for central pressure. Carotid-femoral PWV was used as a metric for aortic 
stiffness, as previously described.15,18,31

Wave separation analysis
Wave separation analysis, which facilitates the breakdown of arterial pres-
sure waves into forward and backward wave components, has been previ-
ously outlined.32 This approach involves quantifying information about 
forward and backward waves through principles of fluid dynamics in com-
pliant tubes.12,33–36 Flow and pressure data were utilized to compute for-
ward and backward pressure waveforms using the linear wave separation 
technique, initially described by Westerhof et al.,32 and details are provided 
in the Supplementary Material. The input impedance of the artery is calcu-
lated using Fourier analysis as the ratio of P(t) and Q(t) harmonics in the fre-
quency domain.15 To evaluate the time delay (TD) between forward 
pressure wave amplitude (Pf) and backward pressure wave amplitude 
(Pb), the method introduced by Qasem and Avolio22 is used.

Wave separation analysis via spectral 
regression learning
A pressure-only estimation of wave separation can be achieved through the 
hybrid spectral regression learning methodology introduced by Aghilinejad 
et al.,37 and further details are provided in the Supplementary Material. In 
this approach, Fourier series (spectral) decomposition is employed for in-
put feature selection. Initially, the carotid pressure waveforms from tono-
metry measurements are sampled at a rate of 1000 Hz, resulting in 1000 
data points per single pressure measurement in a cycle size of 1 s. The 
high dimensionality of the input signal poses limitations on naive regression 
model constructs for practical applications. To address this, in our study, we 

utilized Fourier-based spectral analysis, specifically employing the Fast 
Fourier Transform (FFT), to transform data from a high-dimensional space 
to a low-dimensional one. This approach preserves meaningful properties 
of the original data, while reducing input dimensionality. The advantage of 
using FFT-based input reduction lies in the fact that high-frequency compo-
nents do not provide significant additional physiological information for 
computing the wave separation parameters.13

The regression model is subsequently trained on features derived from 
the Fourier decomposition of the pressure waveform. These models are 
trained with the Fourier modes of the central pressure waveforms as input 
and the Fourier modes of the central flow waveforms as output. Following 
training, the testing data set is utilized once to assess the accuracy of the 
model. The carotid waveform in the testing data set undergoes spectral 
mode decomposition and is then input to the regression model. The output 
of the regression models, representing the estimated modes of the corre-
sponding central flow waveform, is inverse-Fourier-transformed to the 
time domain using the computed modes and the length of the signal. As 
demonstrated in previous studies, there is no need to calibrate the flow 
profile.21 The estimated flow waveform from the regression model is 
then used to conduct the wave separation analysis. The steps for the model 
implementation are presented in Figure 1. In addition to the proposed wave 
separation analysis of this study, we also conducted pressure-only wave 
separation based on the generic triangular flow profile approximation20,21

for comparison in this study.

Statistical analysis
Table 1 illustrates the baseline characteristics of the study sample, with con-
tinuous variables from the sample data summarized as mean ± standard de-
viation (SD). Key parameters, including Pf, Pb, reflection index (RI), and TD 
between forward and backward pressure waves, were selected to assess 
the efficacy of the proposed pressure-only wave separation analysis. The 
reference values for wave separation in all cases were determined using 
central flow measurements in conjunction with carotid pressure measure-
ments, serving as a surrogate for central pressure. To evaluate the accuracy 
of the proposed method, we compared the estimated values with those ob-
tained through an exact wave separation analysis using Pearson correlation 
coefficients (r), the coefficient of determination, and root mean square er-
rors. The agreement and bias between the exact wave separation variables 
and the estimated ones were further examined using a Bland–Altman ana-
lysis, presenting mean differences along with limits of agreement (mean bias  
± 1.96 SD of the differences). Multivariate regression was used to explore 
the influence of clinical covariates on each wave separation variable as well 
as aortic stiffness (quantified by carotid-femoral PWV). The proportion of 
variability in the dependent variable explained by the model was presented 
as R2. Additionally, regression coefficients (beta coefficients) were reported 
along with their 95% confidence intervals. Continuous variables were com-
pared between the groups using the Kruskal–Wallis rank-sum test. 
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Table 1 Baseline characteristics of total patient data (n = 2640), the training subpopulation (n = 1848), and the testing 
subpopulation (n = 792)

Variable Total (n = 2640) Training (n = 1848) Test (n = 792)

Age, years 66 ± 9 66 ± 9 66 ± 9
Women, n (%) 1439 (55) 1000 (54) 439 (55)

Height, cm 167 ± 10 167 ± 10 167 ± 9
Weight, kg 78 ± 17 79 ± 18 78 ± 17
Body mass index, kg/m2 27.9 ± 5.1 27.9 ± 5.1 27.9 ± 5.1

Heart rate, b.p.m. 62 ± 10 62 ± 10 62 ± 10

Brachial blood pressure, mmHg
Systolic 141 ± 20 140 ± 20 141 ± 20

Diastolic 69 ± 9 69 ± 9 69 ± 9
Pulse 72 ± 19 71 ± 19 72 ± 18

All values are (mean ± standard deviation) except as noted.
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Statistical significance was defined as P < 0.001. All mathematical and statis-
tical analyses of the clinical data were performed using custom-written 
codes implemented in Python (Python Software Foundation, Python 
Language Reference, version 3.11).

Results
Accuracy of wave separation parameters
Table 2 presents correlations and errors between pressure-only esti-
mates of wave separation parameters and reference values, as well as 
measures of RI (an indicator of the relative significance of backward 
pressure wave amplitude) and TD (an indicator of the time lag between 
the forward and the backward wave components of the pressure wave-
form). These results are demonstrated within the testing subset of the 
initial population. From the initial testing population of 792 individuals, 
39 patients were excluded due to the failure in PWV measurement, re-
sulting in 753 subjects in Table 2. The last column presents estimates 
derived based on flow estimation from the spectral regression learning 
proposed in this study. The accuracy of the uncalibrated estimated flow 
profiles, used to conduct pressure-only wave separation through spec-
tral regression learning, is presented in Supplementary material online, 
Table S1. Figure 2 illustrates six sample cases from the blind testing set, 
where the uncalibrated flow profile is estimated using spectral regres-
sion learning and overlaid on the measured flow profile. Supplementary 
material online, Figure S1 demonstrates scatter and Bland–Altman plots 
indicating the agreement between the measured and the estimated un-
calibrated averages of the mean flow profile, revealing the method’s 

ability to capture the shape of the flow profile. In Table 1, the estimated 
pressure-only wave separation parameters using conventional triangu-
lar flow estimation are also provided for comparison. In Supplementary 
material online, Table S2, average values for all wave separation para-
meters in different age groups based on pressure and flow measure-
ments are tabulated for reference.

Figure 3 illustrates scatter and Bland–Altman plots indicating agree-
ment in forward and backward pressure wave amplitudes between 
measured (using pressure and flow) and estimated (using pressure-only 
spectral regression learning) values. The coefficient of determination is 
also presented for all the wave separation parameters in these plots. 
The distributions of the residuals between reference and estimated 
variables with respect to age are also presented in Supplementary 
material online, Figure S2.

Analysis of covariates for wave separation 
parameters
Table 3 presents a regression analysis of covariates for measured 
(reference) and estimated forward and backward pressure wave ampli-
tudes. Values for backward pressure wave amplitude (Pb) are inde-
pendently related to age, height, heart rate, and mean blood pressure 
(R2 = 0.904). Weight and sex do not contribute significantly (P >  
0.001). The estimated pressure-only models for backward pressure 
wave amplitude using spectral regression learning show similar results 
to the measured values (R2 = 0.873), except in terms of the signifi-
cance level for height. An analysis of covariates for forward pressure 

Figure 1 A description of the proposed spectral regression learning approach for a pressure-only wave separation analysis. The process starts with a 
non-invasive pressure waveform measurement, followed by a Fourier-based decomposition of the waveform. The wave components of the flow profile 
are then estimated by regression learning and then composed to reconstruct the uncalibrated flow profile. The estimated flow waveform, along with 
the measured pressure waveform, will be used to conduct a wave separation analysis.
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Table 2 Mean values, errors, and correlations between pressure-only estimates of wave separation parameters and 
reference values (n = 753)

Variables Reference (pressure and flow) Triangular flow estimation Pressure-only estimation of this study

Pb (mmHg) 56 (8.2) 67 (10.4) 56 (8.3)
NRMSE (Pbexact − Pbest) (%) — 21.6 5.4

r (Pbexact vs. Pbest) — 0.94 0.94

Pf (mmHg) 92 (16.6) 91 (18.8) 93 (14.3)
NRMSE (Pfexact − Pfest) (%) — 7.5 4.8

r (Pfexact vs. Pfest) — 0.91 0.96

RI 0.38 (0.03) 0.43 (0.04) 0.38 (0.02)
NRMSE (RIexact − RIest) (%) — 25.5 5.4

r (RIexact vs. RIest) — 0.74 0.93

TD (ms) 64 (19) 63 (28) 64 (18)
NRMSE (TDexact − TDest) (%) — 30.5 15.9

r (TDexact vs. TDest) — NC 0.62

NRMSE indicates the normalized root mean square errors by the range of the variable. The values given in the parentheses denote standard deviation. NC indicates not correlated  
(r < 0.2).

Figure 2 Typical sample cases of the estimated and measured central flow waveform profile. The blue waveform (dashed line) demonstrates the 
measured flow profile using ultrasound and the red one (solid line) demonstrates the estimated one using the spectral regression learning method.
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Figure 3 Scatter and Bland–Altman plots for wave separation parameters. The parameters are forward pressure wave amplitude (Pf), backward 
pressure wave amplitude (Pb), reflection index (RI), and time delay (TD) between forward and backward pressure wave amplitudes. The plots are 
demonstrated for the test data (n = 753).
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wave amplitude suggests that values for Pf are independently related to 
age and mean blood pressure (R2 = 0.551). Heart rate, height, weight, 
and sex do not contribute significantly to forward pressure wave amp-
litude. The estimated pressure-only model for forward pressure wave 
amplitude suggests similar results to the same significant parameters 
(i.e. age and mean blood pressure; R2 = 0.627). Both types of models 
(based on measured and estimated wave separation parameters) 
show that the proportion of variance in wave separation variables 
based on common physiological parameters is better explained for 
backward pressure wave amplitudes (Pb) than forward pressure 
wave amplitudes (Pf).

Wave separation associations with aortic 
stiffening
Figure 4 presents unadjusted analysis comparing measures of aortic stiff-
ness in various carotid-femoral PWV groups. In this analysis, subjects 
with elevated aortic stiffness demonstrate a higher forward pressure 
amplitude compared with those with lower levels of aortic stiffness 
(P < 0.001), whereas the increase in backward pressure wave amplitude 
is less significant, especially between the group with a carotid-femoral 

PWV of 8–16 m/s and the one with carotid-femoral PWV >16 m/s. 
The between-group comparison is similar using either estimated or 
measured wave separation parameters. The RI is lower for partici-
pants with higher levels of aortic stiffness (P < 0.001), while the 
change in time delay is not significant between the group with a 
carotid-femoral PWV of 8–16 m/s and the one with carotid-femoral 
PWV >16 m/s.

Table 4 presents the statistical contribution of forward, backward, 
and TD between pressure waves to carotid-femoral PWV based on 
measured (using pressure and flow measurements) and estimated 
(using pressure-only spectral regression learning) wave separation 
values. A base model not including the wave separation variables is pre-
sented as Supplementary material online, Table S3 (R2 = 0.383). When 
forward pressure wave amplitude enters the model, the R2 increases to 
0.428 for the model with an exact forward wave amplitude (based on 
pressure and flow measurement) and R2 increases to 0.413 for the 
model with estimated forward pressure wave amplitude (based on 
pressure-only measurement). When the Pb and time delay enter the 
model (as demonstrated in Table 4), increments to the model R2 are 
not significant.

Discussion
In this study, we comprehensively investigate the accuracy of a novel 
wave separation analysis using spectral regression learning and single 
pressure waveform measurements and investigate the associations 
with aortic stiffness. A primary finding of our study is that the wave sep-
aration parameters, estimated through the proposed spectral regres-
sion learning approach, outperform those based on the triangular 
flow approximation used conventionally in previous studies.21 This is 
due to the ability of our approach in capturing flow waveform morph-
ology, as demonstrated in Figure 2 and Supplementary material online, 
Table S1. Table 2 and Figure 3 indicate a significant correlation between 
forward pressure wave amplitudes and the reference forward pressure 
wave amplitude (R2 of 0.91) with negligible systemic bias. The normal-
ized error associated with the spectral regression learning method for 
forward pressure wave amplitude is 5.4%, which is considerably better 
than the 21.6% error associated with the triangular flow approximation 
method. While the spectral regression learning method outperforms 
the triangular flow approximation method in terms of Pb, the differ-
ence in the error is less significant (4.8 vs. 7.5%). Following Qasem 
and Avolio,22 we also assess the TD between forward and backward 
pressure waves using a cross-correlation technique. Our results also 
suggest that, unlike the triangular flow approximation method, the pro-
posed spectral regression learning method in this study provides accur-
ate estimates of the TD between forward and backward pressure 
waves, with a correlation as high as 0.62 and a moderate R2 of 0.38. 
These results align with findings from other studies, such as the one 
by Kips et al.,23 which demonstrated that TD could not be accurately 
captured using the triangular flow approximation method in a large 
population due to an overestimation in wave components. Our ap-
proach utilizes Fourier-based wave decomposition to analyse pressure 
signals, enabling an accurate estimation of flow wave morphology and a 
subsequent separation of pressure waves. By leveraging harmonic con-
tent, we effectively decode the periodic and oscillatory waves present 
in the cardiovascular system. While previous methods, such as those 
employing multi-Gaussian decomposition,38 have shown efficacy in 
smaller data sets or virtual ones, our approach stands as one of the 
few to be successfully applied in a large, diverse cohort, building upon 
the valuable contributions of existing research.

The results further suggest that the regression analysis of covariates 
and determinants reveals no significant difference between the refer-
ence wave separation parameters and those derived from the 
pressure-only estimates using the spectral regression learning method 
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Table 3 Regression analysis of covariates for measured 
(reference) and estimated forward (Pf) and backward 
(Pb) pressure wave amplitudes (n = 753)

Variables β SE (β) CI (β) P-value

Pb (mmHg) derived from both pressure and flow measurements, adjusted 

R2 = 0.904

Age, years 0.039 0.011 (0.017, 0.062) <0.001
Height, cm −0.143 0.041 (−0.224, −0.063) <0.001

Heart rate, b.p.m. −13.03 0.571 (−14.15, −11.91) <0.001

Mean blood   
pressure, mmHg

0.644 0.008 (0.629, 0.660) <0.001

Pb (mmHg) derived from the proposed pressure-only measurement, 

adjusted R2 = 0.873
Age, years 0.095 0.013 (0.069, 0.121) <0.001

Height, cm −0.089 0.047 (−0.183, 0.004) <0.01a

Heart rate, b.p.m. −8.86 0.664 (−10.166, −7.558) <0.001

Mean blood   

pressure, mmHg

0.638 0.009 (0.621, 0.657) <0.001

Pf (mmHg) derived from both pressure and flow measurements, adjusted 

R2 = 0.551

Age, years 0.506 0.049 (0.406, 0.602) <0.001
Height, cm −0.171 0.178 (−0.526, 0.175) <0.5a

Heart rate, b.p.m. −5.175 2.493 (−10.10, −0.308) <0.1a

Mean blood   
pressure, mmHg

0.901 0.035 (0.833, 0.971) <0.001

Pf (mmHg) derived from the proposed pressure-only measurement, 

adjusted R2 = 0.627
Age, years 0.388 0.039 (0.312, 0.465) <0.001

Height, cm −0.173 0.140 (−0.448, 0.102) <0.5a

Heart rate, b.p.m. −4.735 1.958 (−8.579, −0.892) <0.1a

Mean blood   

pressure, mmHg

0.858 0.027 (0.805, 0.912) <0.001

CI, confidence interval; SE, standard error. 
aA non-significant parameter.
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(Table 3). These results indicate that the variation in backward pressure 
wave amplitude is well explained by age, heart rate, height, and mean 
blood pressure for both the reference and the estimated methods, 
with R2 values of 0.904 and 0.873, respectively. Although the R2 values 
based on the same covariates are smaller for forward pressure wave 
amplitude, there is no significant difference between the measured ref-
erence and the estimated values for forward pressure wave amplitude 
(R2 of 0.551 and 0.627, respectively). Previous studies have demon-
strated that forward pressure wave amplitude serves as a measure 
of proximal aortic geometry and stiffness, while mean arterial pressure 
and backward (reflective) wave amplitudes are more correlated with 
the resistance of vessel structure and function.18 Consequently, the in-
clusion of mean arterial pressure as a determinant in the multivariate 
regression significantly improves the Pb model more than the forward 
pressure wave amplitude, thereby explaining the higher R2. The re-
semblance in the covariate regression models for both Pf and Pb be-
tween the reference and the estimated values implies a comparable 
physiological interpretation of the parameters obtained through the 
spectral regression learning method and the measured ones. It is 
worth noting that Hametner et al.20 demonstrated that drawing a 
similar conclusion is not possible when employing the triangular 
flow approximation or average flow method for pressure-only wave 
separation.

In our current investigation into the associations of wave separation 
parameters with aortic stiffness, participants were categorized into 
groups with carotid-femoral PWV <8, 8–16, and >16 m/s (Figure 4). 

Both the reference and the estimated measures of the wave separation 
parameters yielded consistent trends; forward pressure wave ampli-
tudes differed significantly among the different groups (P < 0.001), 
while the backward pressure wave component and the time delay 
did not exhibit the same variations. Changes in the RI were also signifi-
cant among different groups, yet this change could be attributed solely 
to the forward component. Additionally, we employed a multivariate 
model considering both Pf and Pb, as well as the TD between these 
two waves (Table 4). The results indicated that forward pressure 
wave amplitude remained significant, whereas Pb and TD did not. 
These findings are consistent with prior studies suggesting that for-
ward wave amplitude is associated with the pulsatile load in the car-
diovascular system, while Pb is more associated with the steady load 
component.13,18,39 Our findings further suggest that incorporating 
forward pressure wave amplitude into the base model enhances 
the model’s R2 using reference measures. By utilizing the estimate 
of forward pressure wave amplitude from the spectral regression 
learning method, the model’s R2 improves analogously. These results 
suggest that forward pressure wave amplitude plays a role in elevating 
carotid-femoral PWV (an indicator of vascular stiffening), and these 
adverse effects can be effectively captured using the proposed 
spectral regression learning method for wave separation based solely 
on pressure measurements. Ultimately, this platform provides valu-
able information for assessing cardiovascular health that can be incor-
porated in a wide range of non-invasive, inexpensive, and easy-to-use 
devices.40–45

Figure 4 Boxplots for wave separation parameter distributions for different levels of aortic stiffness. Unadjusted comparisons of forward pressure 
wave amplitude (Pf), backward pressure wave amplitude (Pb), reflection index (RI), and time delay (TD) between participants with carotid-femoral 
pulse wave velocity <8, 8–16, and >16 m/s. Wave separation parameters are determined using the reference (pressure and flow) and spectral regres-
sion learning (pressure-only) methods.
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Study limitations and future work
The major limitation in this study is that we do not have invasively mea-
sured aortic pressure waveforms for determining the exact central 
pressure waveform. Future studies employing invasive clinical measure-
ments can further expand the applicability of the proposed spectral re-
gression learning for the wave separation analysis. However, our choice 
of using the carotid pressure waveform as a surrogate for aortic pres-
sure is well-established and shown in the previous studies.46,47 The FHS 
data used in this study were composed primarily of White participants 
of Western European descent with a mean (range) age of 66 (40–91) 
years. Future studies can aim to include training data from multi-centre 
data sets to further examine and expand the usage of the proposed 
spectral regression learning method. The comparison between the 
parameters derived from the reference wave separation and our pro-
posed pressure-only method is based on cross-sectional data. Future 
studies could benefit from clinical validation using mortality data and as-
sessing the predictive performance of the pressure-only approach on 
cardiovascular events.

Conclusions
This study presented a comprehensive evaluation of a novel spectral re-
gression learning method for pressure-only wave separation analysis in 
a population-based FHS. We demonstrated the method’s accuracy by 
comparing wave separation parameters with a reference method em-
ploying Doppler ultrasound-derived flow waves and tonometry- 

measured pressure waveforms. The proposed pressure-only method 
showed interchangeability with the reference method in a large, het-
erogeneous cohort and its associations with carotid-femoral PWV as 
a marker of vascular ageing. Our investigation into carotid-femoral 
PWV highlighted the significance of forward pressure wave amplitude, 
with the proposed spectral regression learning method demonstrating 
similar performance to that of the reference approach. These findings 
emphasize the clinical applicability and accuracy of the proposed 
pressure-only wave separation analysis, providing a valuable non- 
invasive tool for assessing cardiovascular health.
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